Unfolding the structural stability of nanoalloys via symmetry-constrained genetic algorithm and neural network potential

نویسندگان

چکیده

Abstract The structural stability of nanoalloys is a challenging research subject due to the complexity size, shape, composition, and chemical ordering. genetic algorithm popular global optimization method that can efficiently search for ground-state nanoalloy structure. However, suffers from three significant limitations: efficiency accuracy energy evaluator algorithm’s efficiency. Here we describe construction neural network potential intended rapid accurate predictions Pt-Ni various sizes, shapes, compositions. We further introduce symmetry-constrained significantly improves viability realistic size nanoalloys. combination two allows us explore space homotops compositions consisting up 4033 atoms quantitatively report interplay composition on dominant ordering patterns.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Predictability Power of Neural Network and Genetic Algorithm from Fiems’ Financial crisis

Organizations expose to financial risk that can lead to bankruptcy and loss of business is increased nowadays. This may leads to discontinuity in operations, increased legal fees, administrative costs and other indirect costs. Accordingly, the purpose of this study was to predict the financial crisis of Tehran Stock Exchange using neural network and genetic algorithm. This research is descripti...

متن کامل

Multi-objective optimization of geometrical parameters for constrained groove pressing of aluminium sheet using a neural network and the genetic algorithm

One of sheet severe plastic deformation (SPD) operation, namely constrained groove pressing (CGP), is investigated here in order to specify the optimum values for geometrical variables of this process on pure aluminium sheets. With this regard, two different objective functions, i.e. the uniformity in the effective strain distribution and the necessary force per unit weight of the specimen, are...

متن کامل

Optimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm

Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...

متن کامل

The hybrid approach based on genetic algorithm and neural network to predict financial fraud in banks

Audit has become an essential topic in the world because there is much evidence about deliberate manipulations in the reports. One of the concerns in the field of audit is discovery and search of the financial statements and the high volume of bulk data. This study tried to suggest the appropriate method to detect these frauds due to the data which has been available and a proposed algorithm. R...

متن کامل

The hybrid approach based on genetic algorithm and neural network to predict financial fraud in banks

Audit has become an essential topic in the world because there is much evidence about deliberate manipulations in the reports. One of the concerns in the field of audit is discovery and search of the financial statements and the high volume of bulk data. This study tried to suggest the appropriate method to detect these frauds due to the data which has been available and a proposed algorithm. R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: npj computational materials

سال: 2022

ISSN: ['2057-3960']

DOI: https://doi.org/10.1038/s41524-022-00807-6